Numerical methods for nonlinear inverse problems
نویسندگان
چکیده
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
Numerical Methods for Inverse Singular Value Problems
Two numerical methods one continuous and the other discrete are proposed for solving inverse singular value problems The rst method consists of solving an ordinary di erential equation obtained from an explicit calculation of the projected gradient of a certain objective function The second method generalizes an iterative process proposed originally by Friedland et al for solving inverse eigenv...
متن کاملInexact Numerical Methods for Inverse Eigenvalue Problems
In this paper, we survey some of the latest development in using inexact Newton-like methods for solving inverse eigenvalue problems. These methods require the solutions of nonsymmetric and large linear systems. One can solve the approximate Jacobian equation by iterative methods. However, iterative methods usually oversolve the problem in the sense that they require far more (inner) iterations...
متن کاملNonlinear methods for inverse statistical problems
In the uncertainty treatment framework considered in this paper, the intrinsic variability of the inputs of a physical simulation model is modelled by a multivariate probability distribution. The objective is to identify this probability distribution the dispersion of which is independent of the sample size since intrinsic variability is at stake based on observation of some model outputs. More...
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1996
ISSN: 0377-0427
DOI: 10.1016/0377-0427(96)00026-x